

# Assessment & Sustainable Replacement Options

155 George Street, Prince George, BC

Presented to: Regional District of Fraser-Fort George (RDFFG) Prepared by: McCuaig & Associates Engineering Ltd. Date: February 20, 2024



#### AGENDA

- MAE Introduction
- o Building Description
- Existing HVAC Assessment
- o Energy & GHG Analysis
- Sustainable Replacement Options
- Recommendations
- **Q&A**







### McCuaig and Associates Engineering



#### **Company Introduction**

- Founded: 1992 by Jak McCuaig
- Offices: Vancouver, Victoria, Calgary
- Staff: 40+ engineers, technologists, technicians, and administrative personnel
- Services:
  - Building asset management
  - Building science
  - Mechanical
  - Electrical
  - Energy Performance
  - Hazmat

#### Clients :

- Federal/Provincial/ Municipal governments
- School Boards
- Housing providers
- Large Portfolio Holders

#### McCUAIG & ASSOCIATES ENGINEERING

Today's Speaker



#### LEAD CONSULTANTS



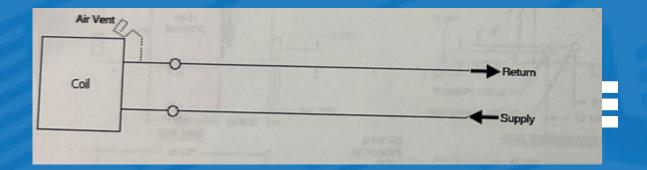


Dmitrii Konkov, P. ENG.

Today's Discussion...

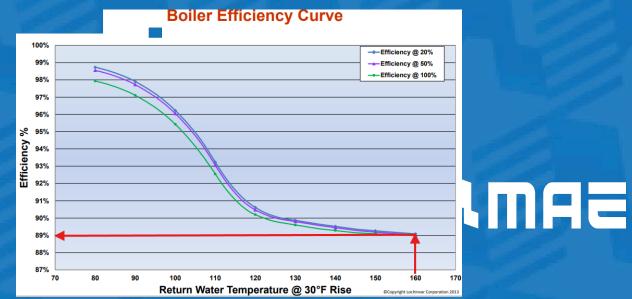


## **Building Description**


155 George Street, Prince George, BC

- Location: 155 George St, Prince George, BC. ASHRAE 4A Zone with 4720 HDD
- Year Built: 1999, 3 storeys, 27,934 sq. ft.
- Occupancy: RDFFG administrative offices
- Structure: Wood-framed, triple-glazed windows
- HVAC: Hydronic boilers, air-cooled chiller, 1 large AHU, fan coils




Distribution

- 24 4- pipe fan coils
- All replaced in 2021 and in good condition
- Minor design issues when supply air goes to one room but returns from another
- All fan coils are "high temperature" fain coils



#### Heating

- 6 condensing boilers, ~270 MBH each
  - 2 IBC boilers installed in 2021. Good Condition
  - 1 Lochinvar installed in 2021. Good Condition
  - 3 HydroTherm boilers original to the building. Poor condition
- Issues:
  - Operating at non-condensing temps (~180°F).
  - Coupled DHW prevents lower return temps.
  - Three boilers used only for backup in extreme cold.



#### Cooling

- 50-ton Daikin chiller installed in 2016 Good Condition
- Fluid cooler from 2007 (near end of life) Acceptable Condition
- Issues:
  - Chiller pipe and HX insulation are damaged (likely birds)
  - Fluid cooler is not properly fastened







Ventilation

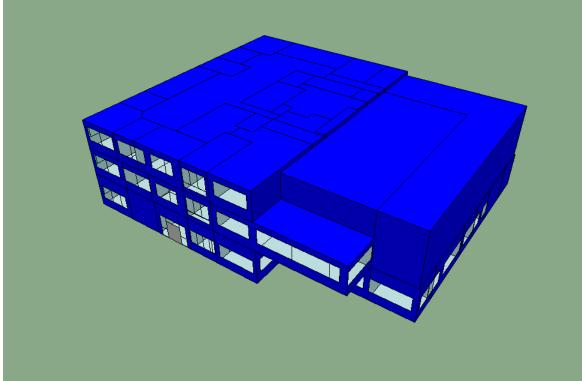
- Single Custom Maid McQuay AHU
- Issues:
  - Originally installed and reached its end of reliable service life
  - Significantly oversized. The unit is 10,000 cfm, while ASHRAE 62.1 (Ventilation in commercial buildings) only requires 3,000 cfm
  - The Oversizing is the reason of the poor performance of the generally well-maintained building

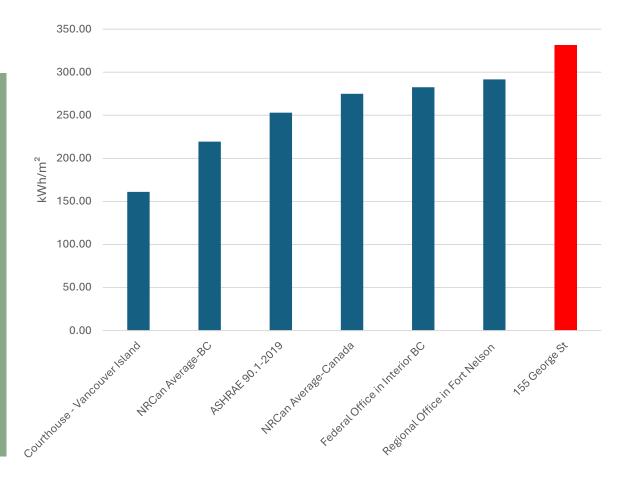




**Domestic Hot Water** 

- One storage tank heater by the boiler plant
- One electric tank heater
- Issues:
  - Both reached the end of reliable service life
  - The storage tank is connected to the boiler plant, preventing it from working in a condensing range and decreasing overall efficiency





## **Electrical Capacity**

- 600 V, 3-phase service
- 750 kVa Transformer and 800 A rated Distribution service
- Peak load is 88.9 kW within the last 3 years
- Building Capacity: 560 kW.
- Available Capacity: 471 kW



# ENERGY MODEL





| SCENARIO                         | BASELINE – UTILITY BILLS | BASELINE - SIMULATED | MAE   | CVRMSE |
|----------------------------------|--------------------------|----------------------|-------|--------|
| Gas Consumption (kWh)            | 567,305.81               | 567,612.10           | 0.05% | 14%    |
| Electricity Consumption<br>(kWh) | 375,800.00               | 365,742.90           | -2.7% | 5%     |

- Option 1: Existing System Optimization
- Option 2: Geothermal System
- Option 3: Electrification
- Option 4: District Energy System
- Solar PV System

1185

5

0



0. Baseline

| Scope                     |
|---------------------------|
| Boiler Replacements EOL   |
| AHU Replacement ASAP      |
| Chiller replaced at EOL   |
| Fan Coils replaced at EOL |

| Parameter                          | Impact       |
|------------------------------------|--------------|
| Energy Use                         | -0 GJ        |
| Greenhouse Gas<br>Emissions        | - 0 Ton CO2e |
| Energy Costs                       | -\$0         |
| Capital Costs                      | \$810,000.00 |
| Financial Metrics<br>(SPP/IRR/NPV) | N/A          |





1. Existing System Optimization

| Scope                          |
|--------------------------------|
| Boiler Plant Redesign          |
| AHU Replacement and downsizing |
| Chiller replaced at EOL        |
| Fan Coils                      |

| Parameter                          | Impact                |
|------------------------------------|-----------------------|
| Energy Use                         | -798 GJ               |
| Greenhouse Gas<br>Emissions        | -41.5 Ton CO2e        |
| Energy Costs                       | -\$12,504.92          |
| Capital Costs                      | \$952,000.00          |
| Financial Metrics<br>(SPP/IRR/NPV) | 11y/ 7% / \$75,749.99 |

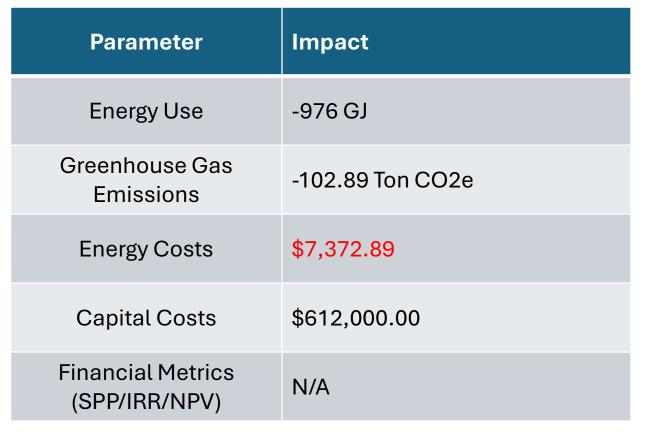




2 Geothermal

| Scope                          |
|--------------------------------|
| Water to Water Heat Pumps      |
| Boreholes and resurfacing      |
| AHU Replacement and downsizing |

Fan Coils




| Parameter                          | Impact                   |
|------------------------------------|--------------------------|
| Energy Use                         | -1,143 GJ                |
| Greenhouse Gas<br>Emissions        | -72.88 Ton CO2e          |
| Energy Costs                       | -\$7,750.70              |
| Capital Costs                      | \$1,117,000.00           |
| Financial Metrics<br>(SPP/IRR/NPV) | 40y/ -3% / -\$172,035.99 |



#### 3 Electrification

| Scope                          |
|--------------------------------|
| Electric Boiler Plant          |
| Chiller at EOL                 |
| AHU Replacement and downsizing |
| Fan Coils at EOL               |







### SUSTAINABLE REPLACEMENT OPTIONS

4 District Energy System

| pe                                 | Parameter                          | Impact              |
|------------------------------------|------------------------------------|---------------------|
| t Exchangers and<br>nection to DES | Energy Use                         | -2,071 GJ           |
| er at EOL                          | Greenhouse Gas<br>Emissions        | -92.11 Ton CO2e     |
| acement and<br>ng                  | Energy Costs                       | \$2,337.54          |
| t EOL                              | Capital Costs                      | \$765,000.00        |
|                                    | Financial Metrics<br>(SPP/IRR/NPV) | N/A/ N/A/ 82,221.35 |





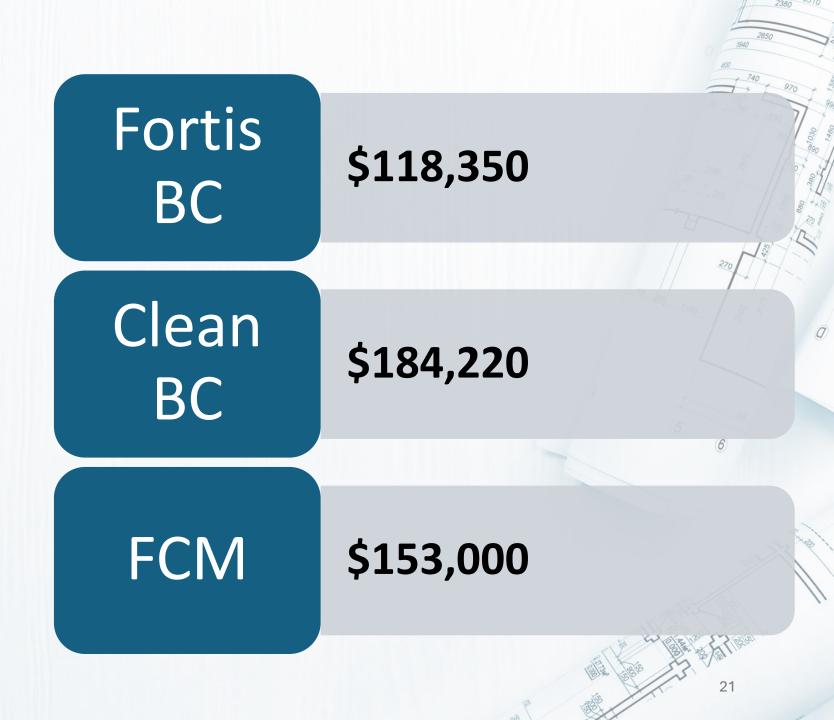
5 Solar

| Scope         |
|---------------|
| No HVAC Scope |
| PV panels     |
|               |

| Parameter                          | Impact                  |
|------------------------------------|-------------------------|
| Energy Use                         | -144 GJ                 |
| Greenhouse Gas<br>Emissions        | -0.62 Ton CO2e          |
| Energy Costs                       | -\$3,685.82             |
| Capital Costs                      | \$135,000.00            |
| Financial Metrics<br>(SPP/IRR/NPV) | 37y/ -3% / -\$70,818.19 |

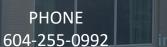


Option 4: District Energy
System


- Reuses recently replaced Fan coil Units
- Relies on high-temperature system
- Minimum changes to the existing Hydronics
- Significant GHG reduction due to Biomass DES<sup>4</sup>

1185

0


- HX service life is up to 50 years
- Low Capital and Maintenance Costs
- o Aligns with the District Climate Action Plan
- Positive public outlook

## Incentives and Rebates









EMAIL

WEB

www.mccuaig.net

